Plotting Multiple Candidate Distributions ​
The method .plot_histogram_distributions()
enables the visual comparison of multiple candidate probability distributions against empirical data. This function generates a histogram overlaid with the Probability Density Functions (PDFs) of the selected fitted distributions, facilitating a comparative analysis.
Parameters ​
n_distributions
(int, optional):
The number of candidate distributions to be displayed in the visualization. Default:10
.n_distributions_visible
(int, optional):
The number of distributions that are initially visible when the plot is rendered. Additional distributions can be manually activated through the plot legend. Default:1
.plot_title
(str, optional):
The title of the generated plot. Default:"Distributions Histogram"
.plot_xaxis_title
(str, optional):
The title of the horizontal axis. Default:"Domain"
.plot_yaxis_title
(str, optional):
The title of the vertical axis. Default:"Density"
.plot_legend_title
(str | None, optional):
The title of the legend box. IfNone
, the legend will not have a title. Default:"Distributions"
.plot_height
(int, optional):
The height of the resulting plot in pixels. Default:400
.plot_width
(int, optional):
The width of the plot in pixels. Default:600
.plot_bar_color
(str, optional):
The color of the histogram bars, specified in RGBA format. Default:"rgba(128,128,128,1)"
(gray).plot_bargap
(float, optional):
The gap between histogram bars, ranging from0
(no gap) to1
(maximum gap). Default:0.15
.plotly_plot_renderer
("png" | "jpeg" | "svg" | None, optional):
The format used when exporting the plot with Plotly. IfNone
, the default renderer is utilized.plot_engine
("plotly" | "matplotlib", optional):
The visualization library used for rendering the plot. Default:"plotly"
.
Default Usage ​
To generate a histogram with the top-ranked probability distributions, the method can be invoked using its default parameters:
phi.plot_histogram_distributions()
By default, this generates a histogram of the empirical data along with the Probability Density Function (PDF) curves of the most suitable fitted distributions.
Complete Usage ​
For users requiring customization, the method can be invoked with explicitly defined parameters:
phi.plot_histogram_distributions(
n_distributions=10,
n_distributions_visible=3,
plot_title="Candidate Distributions",
plot_xaxis_title="Observed Values",
plot_yaxis_title="Density",
plot_legend_title="Candidate Distributions",
plot_height=400,
plot_width=600,
plot_bar_color="rgba(128,128,128,1)",
plot_bargap=0.15,
plotly_plot_renderer="png",
plot_engine="plotly"
)
This configuration ensures that:
- Ten candidate distributions are displayed.
- Three distributions are initially visible.
- The visualization is generated using Plotly, with a title
"Candidate Distributions"
. - The legend is labeled
"Candidate Distributions"
.
Example Visualization ​
Below is an example output of .plot_histogram_distributions()
:
This visualization method enables an immediate assessment of the empirical data in relation to the theoretical distribution fits, supporting rigorous evaluation of candidate models based on their relative goodness-of-fit.