Skip to content

F 4P DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.F4P({"df1": *, "df2": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼F4P(df1,df2,Loc,Sc)

Distribution Domain

x∈[Loc,∞)

Parameters Domain and Constraints

df1∈R+,df2∈R+,Loc∈R,Sc∈R+

Cumulative Distribution Function

FX(x)=Idf1z(x)/(df1z(x)+df2)(df12,df22)

Probability Density Function

fX(x)=1Sc×(df1z(x))df1df2df2(df1z(x)+df2)df1+df2z(x)Beta(df12,df22)

Percent Point Function / Sample

FX−1(u)=Loc+Scdf2×I−1(u,df12,df22)df1×(1−I−1(u,df12,df22))

Parametric Centered Moments

μ~k′=E[X~k]=∫0∞xkfX~(x)dx=Γ(df12+k)Γ(df12)Γ(df22−k)Γ(df22)(df2df1)kif df2>2k

Parametric Mean

Mean(X)=Loc+Scμ~1′=Loc+Scdf2df2−2if df2>2

Parametric Variance

Variance(X)=Sc2(μ~2′−μ~1′2)=Sc22df22(df1+df2−2)df1(df2−2)2(df2−4)if df2>4

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5=(2df1+df2−2)8(df2−4)(df2−6)df1(df1+df2−2)if df2>6

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2=3(8+(df2−6)×Skewness(X)2)2df2−16+3if df2>8

Parametric Median

Median(X)=Loc+Scdf2×I−1(12,df12,df22)df1×(1−I−1(12,df12,df22))

Parametric Mode

Mode(X)=Loc+Scdf2(df1−2)df1(df2+2)if df1>2

Additional Information and Definitions

  • X~∼F(df1,df2)
  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(x−Loc)/Sc
  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I−1(x,a,b):Inverse of regularized incomplete beta function
  • Beta(x,y):Beta function

Spreadsheet Documents