Skip to content

F 4P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.F4P({"df1": *, "df2": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XF4P(df1,df2,Loc,Sc)

Distribution Domain

x[Loc,)

Parameters Domain and Constraints

df1R+,df2R+,LocR,ScR+

Cumulative Distribution Function

FX(x)=Idf1z(x)/(df1z(x)+df2)(df12,df22)

Probability Density Function

fX(x)=1Sc×(df1z(x))df1df2df2(df1z(x)+df2)df1+df2z(x)Beta(df12,df22)

Percent Point Function / Sample

FX1(u)=Loc+Scdf2×I1(u,df12,df22)df1×(1I1(u,df12,df22))

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=Γ(df12+k)Γ(df12)Γ(df22k)Γ(df22)(df2df1)kif df2>2k

Parametric Mean

Mean(X)=Loc+Scμ~1=Loc+Scdf2df22if df2>2

Parametric Variance

Variance(X)=Sc2(μ~2μ~12)=Sc22df22(df1+df22)df1(df22)2(df24)if df2>4

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=(2df1+df22)8(df24)(df26)df1(df1+df22)if df2>6

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=3(8+(df26)×Skewness(X)2)2df216+3if df2>8

Parametric Median

Median(X)=Loc+Scdf2×I1(12,df12,df22)df1×(1I1(12,df12,df22))

Parametric Mode

Mode(X)=Loc+Scdf2(df12)df1(df2+2)if df1>2

Additional Information and Definitions

  • X~F(df1,df2)
  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I1(x,a,b):Inverse of regularized incomplete beta function
  • Beta(x,y):Beta function

Spreadsheet Documents