Skip to content

CHI SQUARE DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.ChiSquare({"df": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼χ2(df)

Distribution Domain

x∈(0,∞)

Parameters Domain and Constraints

df∈N+

Cumulative Distribution Function

FX(x)=γ(df2,x2)Γ(df2)=P(df2,x2)

Probability Density Function

fX(x)=12df/2Γ(df/2)xdf/2−1e−x/2

Percent Point Function / Sample

FX−1(u)=2P−1(df2,u)

Parametric Centered Moments

μk′=E[Xk]=∫0∞xkfX(x)dx=df(df+2)⋯(df+2k−2)=2kΓ(k+df2)Γ(df2)

Parametric Mean

Mean(X)=μ1′=df

Parametric Variance

Variance(X)=μ2′−μ1′2=2df

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=8df

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=3+12df

Parametric Median

Median(X)=2P−1(df2,12)

Parametric Mode

Mode(X)=max(df−2,0)

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P−1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents