Skip to content

CHI SQUARE DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.ChiSquare({"df": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

Xχ2(df)

Distribution Domain

x(0,)

Parameters Domain and Constraints

dfN+

Cumulative Distribution Function

FX(x)=γ(df2,x2)Γ(df2)=P(df2,x2)

Probability Density Function

fX(x)=12df/2Γ(df/2)xdf/21ex/2

Percent Point Function / Sample

FX1(u)=2P1(df2,u)

Parametric Centered Moments

μk=E[Xk]=0xkfX(x)dx=df(df+2)(df+2k2)=2kΓ(k+df2)Γ(df2)

Parametric Mean

Mean(X)=μ1=df

Parametric Variance

Variance(X)=μ2μ12=2df

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=8df

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=3+12df

Parametric Median

Median(X)=2P1(df2,12)

Parametric Mode

Mode(X)=max(df2,0)

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents