Skip to content

DAGUM 4P DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Dagum4P({"a": *, "b": *, "p": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Dagum4P(a,b,p,Loc)

Distribution Domain

x∈(Loc,∞)

Parameters Domain and Constraints

a∈R+,b∈R+,p∈R+,Loc∈R

Cumulative Distribution Function

FX(x)=(1+(x−Locb)−a)−p

Probability Density Function

fX(x)=apx−Loc((x−Locb)ap((x−Locb)a+1)p+1)

Percent Point Function / Sample

FX−1(u)=Loc+b(u−1/p−1)−1/a

Parametric Centered Moments

μ~k′=E[X~k]=∫0∞xkfX~(x)dx=pbk⋅Beta(ap+ka,a−ka)

Parametric Mean

Mean(X)=Loc+μ~1′

Parametric Variance

Variance(X)=μ~2′−μ~1′2

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2

Parametric Median

Median(X)=Loc+b(−1+21p)−1a

Parametric Mode

Mode(X)=Loc+b(ap−1a+1)1a

Additional Information and Definitions

  • X¯∼Dagum(a,b,p)
  • Loc:Location parameter
  • b:Scale parameter
  • u:Uniform[0,1] random varible
  • Beta(x,y):Beta function

Spreadsheet Documents