Skip to content

DAGUM 4P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Dagum4P({"a": *, "b": *, "p": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XDagum4P(a,b,p,Loc)

Distribution Domain

x(Loc,)

Parameters Domain and Constraints

aR+,bR+,pR+,LocR

Cumulative Distribution Function

FX(x)=(1+(xLocb)a)p

Probability Density Function

fX(x)=apxLoc((xLocb)ap((xLocb)a+1)p+1)

Percent Point Function / Sample

FX1(u)=Loc+b(u1/p1)1/a

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=pbkBeta(ap+ka,aka)

Parametric Mean

Mean(X)=Loc+μ~1

Parametric Variance

Variance(X)=μ~2μ~12

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2

Parametric Median

Median(X)=Loc+b(1+21p)1a

Parametric Mode

Mode(X)=Loc+b(ap1a+1)1a

Additional Information and Definitions

  • X¯Dagum(a,b,p)
  • Loc:Location parameter
  • b:Scale parameter
  • u:Uniform[0,1] random varible
  • Beta(x,y):Beta function

Spreadsheet Documents