Skip to content

NON CENTRAL T STUDENT DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.NonCentralTStudent({"lambda": *, "n": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XNonCentralTStudent(λ,n,Loc,Sc)

Distribution Domain

x(,)

Parameters Domain and Constraints

λR,nR+,ScR+,LocR

Cumulative Distribution Function

FX(x)={12j=01j!(λ2)jeλ22Γ(j+12)πIn/(n+z(x)2)(n2,j+12)if  z(x)0112j=01j!(λ2)jeλ22Γ(j+12)πIn/(n+z(x)2)(n2,j+12)if  z(x)<0

Probability Density Function

fX(x)=1Scnn/2Γ(n+1)2neλ2/2(n+z(x)2)n/2Γ(n/2)×{2λz(x)1F1(n2+1,32,λ2z(x)22(n+z(x)2))(n+z(x)2)Γ(n+12)1F1(n+12,12,λ2z(x)22(n+z(x)2))n+z(x)2Γ(n2+1)}

Percent Point Function / Sample

SampleX=Loc+Sc(λ+Φ1(u))(2P1(n2,u))/n

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=eλ2/2nπΓ(n/2)Γ(nk2)nk/2r=0λr2r/2r!Γ(r+k+12)

Parametric Mean

Mean(X)=Loc+Scμ~1

Parametric Variance

Variance(X)=Sc2(μ~2μ~12)

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2

Parametric Median

Median(X)=FX1(12)

Parametric Mode

Mode(X)=argmaxxfX(x)

Additional Information and Definitions

  • X~NonCentralTStudent(λ,n,0,1)
  • Computing an analytic expression for the inverse of the cumulative distribution function is notfeasible. Nonetheless, it is possible to generate a random sample from the distribution.
  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • Iα(x):Modified Bessel function of the first kind of order αN
  • 1F1(a,b,z):Kummer’s confluent hypergeometric function

Spreadsheet Documents