Skip to content

UNIFORM DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.discrete.Uniform({"min": *, "max": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PMF, PPF receive float or numpy.ndarray.
distribution.cdf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.pmf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.ppf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> int
distribution.mode # -> int

Equations

Distribution Definition

XUniform(a,b)

Distribution Domain

x{a,a+1,,b1,b}

Parameters Domain and Constraints

aN,bN,a<b

Cumulative Distribution Function

FX(x)=xa+1ba+1

Probability Density Function

fX(x)=1ba+1

Percent Point Function / Sample

FX1(u)=u(ba+1)+a1

Parametric Centered Moments

E[Xk]=μk=x=abxkfX(x)=1ba+1x=abxk

Parametric Mean

Mean(X)=μ1=a+b2

Parametric Variance

Variance(X)=(μ2μ12)=(ba+1)2112

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=36((ba+1)2+1)5((ba+1)21)

Parametric Median

Median(X)=a+b2

Parametric Mode

Mode(X)[a,b]

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • x:Ceiling Function

Spreadsheet Documents