Skip to content

LOGLOGISTIC 3P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.LogLogistic3P({"loc": *, "alpha": *, "beta": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XLogLogistic3P(Loc,α,β)

Distribution Domain

x[Loc,)

Parameters Domain and Constraints

LocR,αR+,βR+

Cumulative Distribution Function

FX(x)=11+((xLoc)/α)β

Probability Density Function

fX(x)=(β/α)((xLoc)/α)β1(1+((xLoc)/α)β)2

Percent Point Function / Sample

FX1(u)=Loc+α(u1u)1/β

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=αkBeta(1k/β,1+k/β)=αkkπ/βsin(kπ/β)

Parametric Mean

Mean(X)=Loc+μ~1

Parametric Variance

Variance(X)=μ~2μ~12

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2

Parametric Median

Median(X)=Loc+α

Parametric Mode

Mode(X)=Loc+α(β1β+1)1/β

Additional Information and Definitions

  • X~LogLogistic(α,β)
  • Loc:Location parameter
  • α:Scale parameter
  • u:Uniform[0,1] random varible
  • Beta(x,y):Beta function

Spreadsheet Documents