Skip to content

ERLANG 3P DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Erlang3P({"k": *, "beta": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Erlang3P(k,β,Loc)

Distribution Domain

x∈[Loc,∞)

Parameters Domain and Constraints

k∈N+,β∈R+,Loc∈R

Cumulative Distribution Function

FX(x)=P(k,x−Locβ)=γ(k,x−Locβ)(k−1)!

Probability Density Function

fX(x)=(x−Loc)k−1e−x−Locββk(k−1)!

Percent Point Function / Sample

FX−1(u)=Loc+βP−1(k,u)

Parametric Centered Moments

μ~n′=E[X~n]=∫0∞xnfX~(x)dx=βnΓ(n+k)Γ(k)

Parametric Mean

Mean(X)=Loc+μ~1′

Parametric Variance

Variance(X)=μ~2′−μ~1′2

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2

Parametric Median

Median(X)=Loc+P(k,12β)

Parametric Mode

Mode(X)=Loc+β⋅(k−1)

Additional Information and Definitions

  • X~∼Erlang(k,β)
  • Loc:Location parameter
  • β:Scale parameter
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P−1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents