Skip to content

MOYAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Moyal({"mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XMoyal(μ,σ)

Distribution Domain

x(,)

Parameters Domain and Constraints

μR,σR+

Cumulative Distribution Function

FX(x)=1P(12,ez(x)2)=1erf(exp(0.5z(x))2)

Probability Density Function

fX(x)=12πexp(12(z(x)+ez(x)))

Percent Point Function / Sample

FX1(u)=μ+σln[Φ1((1u2)2)]=μ+σln[2P1(12,1u)]

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx

Parametric Mean

Mean(X)=μ1=μ+σ(ln(2)+γ)

Parametric Variance

Variance(X)=μ2μ12=σ2(π22)

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=282ζ(3)π3

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=7

Parametric Median

Median(X)=μ+σln[2P1(12,12)]

Parametric Mode

Mode(X)=μ

Additional Information and Definitions

  • μ:Location parameter
  • σ:Scale parameter
  • z(x)=(xμ)/σ
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function
  • erf(x):Error function
  • Φ1(x):PPF normal standard distribution
  • γ:Euler-Mascheroni constant=0.5772156649
  • ζ(3):Apéry’s constant=1.2020569031

Spreadsheet Documents