Skip to content

NAKAGAMI DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Nakagami({"m": *, "omega": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XNakagami(m,Ω)

Distribution Domain

x(0,)

Parameters Domain and Constraints

mR12+,ΩR+

Cumulative Distribution Function

FX(x)=γ(m,mΩx2)Γ(m)=P(m,mΩx2)

Probability Density Function

fX(x)=2mmΓ(m)Ωmx2m1exp(mΩx2)

Percent Point Function / Sample

FX1(u)=ΩmP1(m,u)

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx

Parametric Mean

Mean(X)=μ1=Γ(m+12)Γ(m)(Ωm)1/2

Parametric Variance

Variance(X)=μ2μ12=Ω(11m(Γ(m+12)Γ(m))2)

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=Γ(m+12)Γ(m)m(14m(11m(Γ(m+12)Γ(m))2))2m(11m(Γ(m+12)Γ(m))2)3/2

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=3+6(Γ(m+12)Γ(m)m)4m+(8m2)(Γ(m+12)Γ(m)m)22m+1m(11m(Γ(m+12)Γ(m))2)2

Parametric Median

Median(X)=ΩmP1(m,12)

Parametric Mode

Mode(X)=22((2m1)Ωm)1/2

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P1(a,u):Inverse of regularized lower incomplete gamma function

Spreadsheet Documents