Skip to content

T STUDENT 3P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.TStudent3P({"df": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XTStudent3P(df,Loc,Sc)

Distribution Domain

x(,)

Parameters Domain and Constraints

dfR+,LocR,ScR+

Cumulative Distribution Function

FX(x)=I(z(x)+z(x)2+df2z(x)2+df,df2,df2)

Probability Density Function

fX(x)=(1+z(x)2/df)(1+df)/2df×Beta(12,df2)

Percent Point Function / Sample

FX1(u)={Loc+Sc df(1I1(u,df/2,df/2))I1(u,df/2,df/2)if  u12LocSc df(1I1(u,df/2,df/2))I1(u,df/2,df/2)if  u<12

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx={0if  k odd  0<k<dfdfk2i=1k/22i1df2iif  k even  0<k<df

Parametric Mean

Mean(X)=Loc+Scμ~1=Loc

Parametric Variance

Variance(X)=Sc2×(μ~2μ~12)={Sc2 df/(df+2)if  df>2undefinedif  df2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5={0if  df>3undefinedif  df3

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2={3+6/(df4)if  df>4undefinedif  df4

Parametric Median

Median(X)=Loc

Parametric Mode

Mode(X)=Loc

Additional Information and Definitions

  • X~TStudent(df)
  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I1(x,a,b):Inverse of regularized incomplete beta function
  • Beta(x,y):Beta function

Spreadsheet Documents