Skip to content

POISSON DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.discrete.Poisson({"lambda": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PMF, PPF receive float or numpy.ndarray.
distribution.cdf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.pmf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.ppf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> int
distribution.mode # -> int

Equations

Distribution Definition

XPoisson(λ)

Distribution Domain

xN{0,1,2,}

Parameters Domain and Constraints

λR+

Cumulative Distribution Function

FX(x)=eλi=0xλii!=1γ(x+1,λ)x!=1P(x1,λ)

Probability Density Function

fX(x)=λxeλx!

Percent Point Function / Sample

FX1(u)=argminx|FX(x)u|

Parametric Centered Moments

E[Xk]=μk=x=0xkfX(x)

Parametric Mean

Mean(X)=μ1=λ

Parametric Variance

Variance(X)=(μ2μ12)=λ

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=λ1/2

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=3+λ1

Parametric Median

Median(X)=λ+1/30.02/λ

Parametric Mode

Mode(X)=λ

Additional Information and Definitions

  • Computing an analytic expression for the inverse of the cumulative distribution functionis not feasible. However, it is possible to calculate the Percentile Point Function byapproximating it to the nearest integer.
  • u:Uniform[0,1] random varible
  • x:Floor function
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete Gamma function

Spreadsheet Documents