Skip to content

INVERSE GAUSSIAN 3P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.InverseGaussian3P({"mu": *, "lambda": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XInverseGaussian3P(μ,λ,Loc)

Distribution Domain

x(0,)

Parameters Domain and Constraints

μR+,λR+,LocR

Cumulative Distribution Function

FX(x)=Φ(λxLoc(xLocμ1))+exp(2λμ)Φ(λxLoc(xLocμ+1))

Probability Density Function

fX(x)=λ2π(xLoc)3exp[λ(xμLoc)22μ2(xLoc)]

Percent Point Function / Sample

SampleX={Loc+x0ifu2μμ+x0Loc+μ2x0ifu2μμ+x0

Parametric Centered Moments

μk=E[Xk]=LocxkfX(x)dx

Parametric Mean

Mean(X)=μ1=Loc+μ

Parametric Variance

Variance(X)=μ2μ12=μ3λ

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=3(μλ)1/2

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=3+15μλ

Parametric Median

Median(X)=FX1(12)

Parametric Mode

Mode(X)=Loc+μ[(1+9μ24λ2)123μ2λ]

Additional Information and Definitions

  • Computing an analytic expression for the inverse of the cumulative distribution function is notfeasible. Nonetheless, it is possible to generate a random sample from the distribution.
  • Loc:Location parameter
  • Φ(x):CDF normal standard distribution
  • Φ1(x):PPF normal standard distribution
  • x0=μ+μ2[Φ1(u1)]22λμ2λ4μλ[Φ1(u1)]2+μ2([Φ1(u1)]2)2
  • u1:Uniform[0,1] random varible
  • u2:Uniform[0,1] random varible

Spreadsheet Documents