Skip to content

GENERALIZED NORMAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.GeneralizedNormal({"beta": *, "mu": *, "alpha": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XGeneralizedNormal(β,μ,α)

Distribution Domain

x(,+)

Parameters Domain and Constraints

βR+,μR,αR+

Cumulative Distribution Function

FX(x)=12+sign(xμ)2Γ(1/β)γ(1/β,|xμα|β)=12+sign(xμ)2P(1/β,|xμα|β)

Probability Density Function

fX(x)=β2αΓ(1/β)exp((|xμ|α)β)

Percent Point Function / Sample

FX1(u)=sign(u12)[αβP1(1β,2|u12|)]1/β+μ

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx={0if k is oddαkΓ(k+1β)/Γ(1β)if k is even

Parametric Mean

Mean(X)=μ+αμ1=μ

Parametric Variance

Variance(X)=α2(μ2μ12)=α2Γ(3/β)Γ(1/β)

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=Γ(5/β)Γ(1/β)Γ(3/β)2

Parametric Median

Median(X)=μ

Parametric Mode

Mode(X)=μ

Additional Information and Definitions

  • μ:Location parameter
  • α:Scale parameter
  • u:Uniform[0,1] random varible
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents