Skip to content

DAGUM DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Dagum({"a": *, "b": *, "p": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Dagum(a,b,p)

Distribution Domain

x∈(0,∞)

Parameters Domain and Constraints

a∈R+,b∈R+,p∈R+

Cumulative Distribution Function

FX(x)=(1+(xb)−a)−p

Probability Density Function

fX(x)=apx((xb)ap((xb)a+1)p+1)

Percent Point Function / Sample

FX−1(u)=b(u−1/p−1)−1/a

Parametric Centered Moments

μk′=E[Xk]=∫0∞xkfX(x)dx=pbk⋅Beta(ap+ka,a−ka)

Parametric Mean

Mean(X)=μ1′

Parametric Variance

Variance(X)=μ2′−μ1′2

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2

Parametric Median

Median(X)=b(−1+21p)−1a

Parametric Mode

Mode(X)=b(ap−1a+1)1a

Additional Information and Definitions

  • b:Scale parameter
  • u:Uniform[0,1] random varible
  • Beta(x,y):Beta function

Spreadsheet Documents