Skip to content

DAGUM DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Dagum({"a": *, "b": *, "p": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XDagum(a,b,p)

Distribution Domain

x(0,)

Parameters Domain and Constraints

aR+,bR+,pR+

Cumulative Distribution Function

FX(x)=(1+(xb)a)p

Probability Density Function

fX(x)=apx((xb)ap((xb)a+1)p+1)

Percent Point Function / Sample

FX1(u)=b(u1/p1)1/a

Parametric Centered Moments

μk=E[Xk]=0xkfX(x)dx=pbkBeta(ap+ka,aka)

Parametric Mean

Mean(X)=μ1

Parametric Variance

Variance(X)=μ2μ12

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2

Parametric Median

Median(X)=b(1+21p)1a

Parametric Mode

Mode(X)=b(ap1a+1)1a

Additional Information and Definitions

  • b:Scale parameter
  • u:Uniform[0,1] random varible
  • Beta(x,y):Beta function

Spreadsheet Documents