Skip to content

ERLANG DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Erlang({"k": *, "beta": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XErlang(k,β)

Distribution Domain

x[0,)

Parameters Domain and Constraints

kN+,βR+

Cumulative Distribution Function

FX(x)=P(k,xβ)=γ(k,xβ)(k1)!

Probability Density Function

fX(x)=xk1exββk(k1)!

Percent Point Function / Sample

FX1(u)=βP1(k,u)

Parametric Centered Moments

μn=E[Xn]=0xnfX(x)dx=βnΓ(n+k)Γ(k)

Parametric Mean

Mean(X)=μ1

Parametric Variance

Variance(X)=μ2μ12

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2

Parametric Median

Median(X)=P(k,12β)

Parametric Mode

Mode(X)=β(k1)

Additional Information and Definitions

  • β:Scale parameter
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents