Skip to content

NON CENTRAL CHI SQUARE DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.NonCentralChiSquare({"lambda": *, "n": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XNonCentralChiSquare(λ,n)

Distribution Domain

x[0,+)

Parameters Domain and Constraints

λR+,nR+

Cumulative Distribution Function

FX(x)=1Qn2(λ,x)

Probability Density Function

fX(x)=12e(x+λ)/2(xλ)n/41/2In/21(λx)

Percent Point Function / Sample

SampleX=i=1n(λn+Φ1(ui))2

Parametric Centered Moments

μk=E[Xk]=0xkfX(x)dx=2k1(k1)!(n+kλ)+j=1k1(k1)!2j1(kj)!(n+jλ)μkj

Parametric Mean

Mean(X)=μ1=n+λ

Parametric Variance

Variance(X)=μ2μ12=2(n+2λ)

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=23/2(n+3λ)(n+2λ)3/2

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=12(n+4λ)(n+2λ)2

Parametric Median

Median(X)=FX1(12)

Parametric Mode

Mode(X)=argmaxxfX(x)

Additional Information and Definitions

  • Computing an analytic expression for the inverse of the cumulative distribution function is notfeasible. Nonetheless, it is possible to generate a random sample from the distribution.
  • ui:Uniform[0,1] random varible
  • Φ1(x):PPF normal standard distribution
  • Iα(x):Modified Bessel function of the first kind of order αN

Spreadsheet Documents