Skip to content

BURR 4P DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Burr4P({"A": *, "B": *, "C": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Burr4P(A,B,C,Loc)

Distribution Domain

x∈[Loc,∞)

Parameters Domain and Constraints

A∈R+,B∈R,C∈R+,Loc∈R

Cumulative Distribution Function

FX(x)=1−[1+(x−LocA)B]−C

Probability Density Function

fX(x)=BCA(x−LocA)B−1[1+(x−LocA)B]−C−1

Percent Point Function / Sample

FX−1(u)=Loc+A[(1−u)−1c−1]1B

Parametric Centered Moments

μ~k′=E[X~k]=∫0∞xkfX~=AkC×Beta(BC−kB,B+KB)

Parametric Mean

Mean(X)=Loc+μ~1′

Parametric Variance

Variance(X)=μ~2′−μ~1′2

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2

Parametric Median

Median(X)=Loc+A[(12)−1c−1]1B

Parametric Mode

Mode(X)=Loc+A(B−1BC+1)1B

Additional Information and Definitions

  • X~∼Burr(A,B,C)
  • Loc:Location parameter
  • u:Uniform[0,1] random varible
  • Beta(x,y):Beta function

Spreadsheet Documents