Skip to content

ALPHA DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Alpha({"alpha": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XAlpha(α,Loc,Sc)

Distribution Domain

x(Loc,)

Parameters Domain and Constraints

αR+,LocR,ScR+

Cumulative Distribution Function

FX(x)=Φ(α1z(x))Φ(α)

Probability Density Function

fX(x)=1Scz(x)2Φ(α)2πexp(12(α1z(x))2)

Percent Point Function / Sample

FX1(u)=Loc+Sc×1αΦ1(uΦ(α))

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx

Parametric Mean

Mean(X)=Loc+Scμ~1

Parametric Variance

Variance(X)=Sc2(μ~2μ~12)

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2

Parametric Median

Median(X)=Loc+ScαΦ1(12Φ(α))

Parametric Mode

Mode(X)=Loc+Sc(α2+8α)4

Additional Information and Definitions

  • X~Alpha(α,0,1)
  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • Φ(x):CDF normal standard distribution
  • Φ1(x):PPF normal standard distribution

Spreadsheet Documents