Skip to content

CHI SQUARE 3P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.ChiSquare3P({"df": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

Xχ3P2(df,Loc,Sc)

Distribution Domain

x(Loc,)

Parameters Domain and Constraints

dfN+,LocR,ScR+

Cumulative Distribution Function

FX(x)=γ(df2,z(x)2)Γ(df2)=P(df2,z(x)2)

Probability Density Function

fX(x)=1Sc12df/2Γ(df/2)xdf/21ez(x)/2

Percent Point Function / Sample

FX1(u)=2P1(df2,u)

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=df(df+2)(df+2k2)=2kΓ(k+df2)Γ(df2)

Parametric Mean

Mean(X)=Loc+Scμ~1=Loc+Scdf

Parametric Variance

Variance(X)=Sc2(μ~2μ~12)=2dfSc2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=8df

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=3+12df

Parametric Median

Median(X)=Loc+Sc×2P1(df2,12)

Parametric Mode

Mode(X)=Loc+Sc×max(df2,0)

Additional Information and Definitions

  • X~χ2(df)
  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents