Skip to content

CHI SQUARE 3P DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.ChiSquare3P({"df": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼χ3P2(df,Loc,Sc)

Distribution Domain

x∈(Loc,∞)

Parameters Domain and Constraints

df∈N+,Loc∈R,Sc∈R+

Cumulative Distribution Function

FX(x)=γ(df2,z(x)2)Γ(df2)=P(df2,z(x)2)

Probability Density Function

fX(x)=1Sc12df/2Γ(df/2)xdf/2−1e−z(x)/2

Percent Point Function / Sample

FX−1(u)=2P−1(df2,u)

Parametric Centered Moments

μ~k′=E[X~k]=∫0∞xkfX~(x)dx=df(df+2)⋯(df+2k−2)=2kΓ(k+df2)Γ(df2)

Parametric Mean

Mean(X)=Loc+Sc⋅μ~1′=Loc+Sc⋅df

Parametric Variance

Variance(X)=Sc2⋅(μ~2′−μ~1′2)=2⋅df⋅Sc2

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5=8df

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2=3+12df

Parametric Median

Median(X)=Loc+Sc×2P−1(df2,12)

Parametric Mode

Mode(X)=Loc+Sc×max(df−2,0)

Additional Information and Definitions

  • X~∼χ2(df)
  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(x−Loc)/Sc
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P−1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents