Skip to content

MAXWELL DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Maxwell({"alpha": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Maxwell(α,Loc)

Distribution Domain

x∈(0,∞)

Parameters Domain and Constraints

α∈R+,Loc∈R

Cumulative Distribution Function

FX(x)=erf(x−Loc2α)−2π(x−Loc)e−(x−Loc)2/(2α2)α

Probability Density Function

fX(x)=2π(x−Loc)2e−(x−Loc)2/(2α2)α3

Percent Point Function / Sample

FX−1(u)=Loc+α2P−1(1.5,u)

Parametric Centered Moments

μk′=E[Xk]=∫−∞∞xkfX(x)dx

Parametric Mean

Mean(X)=μ1′=Loc+2α2π

Parametric Variance

Variance(X)=μ2′−μ1′2=α2(3π−8)π

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=22(16−5π)(3π−8)3/2

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=4(−96+40π−3π2)(3π−8)2+3

Parametric Median

Median(X)=Loc+α2P−1(1.5,12)

Parametric Mode

Mode(X)=Loc+α2

Additional Information and Definitions

  • Loc:Location parameter
  • α:Scale parameter
  • u:Uniform[0,1] random varible
  • P−1(a,u):Inverse of regularized lower incomplete gamma function

Spreadsheet Documents