Skip to content

MAXWELL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Maxwell({"alpha": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XMaxwell(α,Loc)

Distribution Domain

x(0,)

Parameters Domain and Constraints

αR+,LocR

Cumulative Distribution Function

FX(x)=erf(xLoc2α)2π(xLoc)e(xLoc)2/(2α2)α

Probability Density Function

fX(x)=2π(xLoc)2e(xLoc)2/(2α2)α3

Percent Point Function / Sample

FX1(u)=Loc+α2P1(1.5,u)

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx

Parametric Mean

Mean(X)=μ1=Loc+2α2π

Parametric Variance

Variance(X)=μ2μ12=α2(3π8)π

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=22(165π)(3π8)3/2

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=4(96+40π3π2)(3π8)2+3

Parametric Median

Median(X)=Loc+α2P1(1.5,12)

Parametric Mode

Mode(X)=Loc+α2

Additional Information and Definitions

  • Loc:Location parameter
  • α:Scale parameter
  • u:Uniform[0,1] random varible
  • P1(a,u):Inverse of regularized lower incomplete gamma function

Spreadsheet Documents