Skip to content

BETA DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Beta({"alpha": *, "beta": *, "A": *, "B": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Beta(α,β,A,B)

Distribution Domain

x∈(A,B)

Parameters Domain and Constraints

α∈R+,β∈R+,A∈R,B∈R,A<B

Cumulative Distribution Function

FX(x)=I(z(x),α,β)

Probability Density Function

fX(x)=z(x)α−1(1−z(x))β−1Beta(α,β)(B−A)

Percent Point Function / Sample

FX−1(u)=A+(B−A)×I−1(u,α,β)

Parametric Centered Moments

μ~k′=E[X~k]=∫01xkfX~(x)dx

Parametric Mean

Mean(X)=A+(B−A)⋅μ~1′=A+α(B−A)α+β

Parametric Variance

Variance(X)=(B−A)2⋅(μ~2′−μ~1′2)=αβ(B−A)2(α+β)2(α+β+1)

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5=2(β−α)α+β+1(α+β+2)αβ

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2=3+6[(α−β)2(α+β+1)−αβ(α+β+2)]αβ(α+β+2)(α+β+3)

Parametric Median

Median(X)=A+(B−A)×I−1(12,α,β)if α,β>1

Parametric Mode

Mode(X)=A+(B−A)α−1α+β−2if α,β>1

Additional Information and Definitions

  • X~∼Beta(α,β,0,1)
  • z(x)=(x−A)/(B−A)
  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I−1(x,a,b):Inverse of regularized incomplete beta function
  • Beta(x,y):Beta function

Spreadsheet Documents