Skip to content

BETA DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Beta({"alpha": *, "beta": *, "A": *, "B": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XBeta(α,β,A,B)

Distribution Domain

x(A,B)

Parameters Domain and Constraints

αR+,βR+,AR,BR,A<B

Cumulative Distribution Function

FX(x)=I(z(x),α,β)

Probability Density Function

fX(x)=z(x)α1(1z(x))β1Beta(α,β)(BA)

Percent Point Function / Sample

FX1(u)=A+(BA)×I1(u,α,β)

Parametric Centered Moments

μ~k=E[X~k]=01xkfX~(x)dx

Parametric Mean

Mean(X)=A+(BA)μ~1=A+α(BA)α+β

Parametric Variance

Variance(X)=(BA)2(μ~2μ~12)=αβ(BA)2(α+β)2(α+β+1)

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=2(βα)α+β+1(α+β+2)αβ

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=3+6[(αβ)2(α+β+1)αβ(α+β+2)]αβ(α+β+2)(α+β+3)

Parametric Median

Median(X)=A+(BA)×I1(12,α,β)if α,β>1

Parametric Mode

Mode(X)=A+(BA)α1α+β2if α,β>1

Additional Information and Definitions

  • X~Beta(α,β,0,1)
  • z(x)=(xA)/(BA)
  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I1(x,a,b):Inverse of regularized incomplete beta function
  • Beta(x,y):Beta function

Spreadsheet Documents