Skip to content

EXPONENTIAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Exponential({"lambda": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XExponential(λ)

Distribution Domain

x[0,)

Parameters Domain and Constraints

λR+

Cumulative Distribution Function

FX(x)=1eλx

Probability Density Function

fX(x)=λeλx

Percent Point Function / Sample

FX1(u)=ln(1u)λ

Parametric Centered Moments

μk=E[Xk]=0xnfX(x)dx=k!λk

Parametric Mean

Mean(X)=μ1=1λ

Parametric Variance

Variance(X)=μ2μ12=1λ2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=2

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=9

Parametric Median

Median(X)=ln2λ

Parametric Mode

Mode(X)=0

Additional Information and Definitions

  • λ:Inverse of scale parameter
  • u:Uniform[0,1] random varible

Spreadsheet Documents