Skip to content

LAPLACE DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Laplace({"mu": *, "b": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XLaplace(μ,b)

Distribution Domain

x(,)

Parameters Domain and Constraints

μR+,bR+

Cumulative Distribution Function

FX(x)=12+12sign(xμ)(1exp(|xμ|b))

Probability Density Function

fX(x)=12bexp(|xμ|b)

Percent Point Function / Sample

FX1(u)=μb×sign(u12)ln(12|p12|)

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx=(12)k=0r[r!(rk)!bkμ(rk){1+(1)k}]

Parametric Mean

Mean(X)=μ1=μ

Parametric Variance

Variance(X)=μ2μ12=2b2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=6

Parametric Median

Median(X)=μ

Parametric Mode

Mode(X)=μ

Additional Information and Definitions

  • μ:Location parameter
  • b:Scale parameter
  • u:Uniform[0,1] random varible

Spreadsheet Documents