Skip to content

GAMMA DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Gamma({"alpha": *, "beta": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XGamma(α,β)

Distribution Domain

x(0,)

Parameters Domain and Constraints

αR+,βR+

Cumulative Distribution Function

FX(x)=P(α,xβ)=1Γ(α)γ(α,xβ)

Probability Density Function

fX(x)=1Γ(α)βαxα1exβ

Percent Point Function / Sample

FX1(u)=βP1(α,u)

Parametric Centered Moments

μk=E[Xk]=0xkfX(x)dx=βkΓ(k+α)Γ(α)

Parametric Mean

Mean(X)=μ1=αβ

Parametric Variance

Variance(X)=μ2μ12=αβ2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=2α

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=3+6α

Parametric Median

Median(X)=(α1)βif α>1

Parametric Mode

Mode(X)=βP1(α,12)

Additional Information and Definitions

  • β:Scale parameter
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents