Skip to content

GENERALIZED GAMMA 4P DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.GeneralizedGamma4P({"a": *, "d": *, "p": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼GeneralizedGamma4P(a,d,p,Loc)

Distribution Domain

x∈(Loc,∞)

Parameters Domain and Constraints

a∈R+,d∈R+,p∈R+,Loc∈R

Cumulative Distribution Function

FX(x)=P(d/p,((x−Loc)/a)p)=γ(d/p,((x−Loc)/a)p)Γ(d/p)

Probability Density Function

fX(x)=p/adΓ(d/p)(x−Loc)d−1e−((x−Loc)/a)p

Percent Point Function / Sample

FX−1(u)=Loc+aP−1(dp,u)1p

Parametric Centered Moments

μ~k′=E[X~k]=∫0∞xkfX~(x)dx=akΓ(d+kp)Γ(dp)

Parametric Mean

Mean(X)=Loc+μ~1′

Parametric Variance

Variance(X)=μ~2′−μ~1′2

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2

Parametric Median

Median(X)=Loc+aP−1(dp,12)1p

Parametric Mode

Mode(X)=Loc+a(d−1p)1pif d>1

Additional Information and Definitions

  • X~∼GeneralizedGamma(a,d,p)
  • Loc:Location parameter
  • a:Scale parameter
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P−1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents