Skip to content

UNIFORM DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.Uniform({"a": *, "b": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼Uniform(a,b)

Distribution Domain

x∈[a,b]

Parameters Domain and Constraints

a∈R,b∈R,a<b

Cumulative Distribution Function

FX(x)=x−ab−a

Probability Density Function

fX(x)=1b−a

Percent Point Function / Sample

FX−1(u)=a+u⋅(b−a)

Parametric Centered Moments

μk′=E[Xk]=∫−∞∞xkfX(x)dx=1k+1∑i=0kaibk−i

Parametric Mean

Mean(X)=μ1′=12(a+b)

Parametric Variance

Variance(X)=μ2′−μ1′2

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=3−65

Parametric Median

Median(X)=12(a+b)

Parametric Mode

Mode(X)∈[a,b]

Additional Information and Definitions

  • u:Uniform[0,1] random varible

Spreadsheet Documents