Skip to content

FOLDED NORMAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.FoldedNormal({"mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XFoldedNormal(μ,σ)

Distribution Domain

x[0,)

Parameters Domain and Constraints

μR,σR+

Cumulative Distribution Function

FX(x)=12[erf(x+μσ2)+erf(xμσ2)]

Probability Density Function

fX(x)=1σ2πe(xμ)22σ2+1σ2πe(x+μ)22σ2

Percent Point Function / Sample

SampleX(u)=|μ+σΦ1(u)|

Parametric Centered Moments

μk=E[Xk]=0xkfX(x)dx

Parametric Mean

Mean(X)=μ1=σ2πe(μ2/2σ2)+μ(12Φ(μσ))

Parametric Variance

Variance(X)=μ2μ12=μ2+σ2Mean(X)2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2

Parametric Median

Median(X)=|μ+σΦ1(1/2)|

Parametric Mode

Mode(X)=argmaxxfX(x)

Additional Information and Definitions

  • Computing an analytic expression for the inverse of the cumulative distribution function is notfeasible. Nonetheless, it is possible to generate a random sample from the distribution.
  • μ:Location parameter
  • σ:Scale parameter
  • u:Uniform[0,1] random varible
  • Φ(x):CDF normal standard distribution
  • ϕ(x):PDF normal standard distribution
  • Φ1(x):PPF normal standard distribution

Spreadsheet Documents