Skip to content

GENERALIZED GAMMA DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.GeneralizedGamma({"a": *, "d": *, "p": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼GeneralizedGamma(a,d,p)

Distribution Domain

x∈(0,∞)

Parameters Domain and Constraints

a∈R+,d∈R+,p∈R+

Cumulative Distribution Function

FX(x)=P(d/p,(x/a)p)=γ(d/p,(x/a)p)Γ(d/p)

Probability Density Function

fX(x)=p/adΓ(d/p)xd−1e−(x/a)p

Percent Point Function / Sample

FX−1(u)=aP−1(dp,u)1p

Parametric Centered Moments

μk′=E[Xk]=∫0∞xkfX(x)dx=akΓ(d+kp)Γ(dp)

Parametric Mean

Mean(X)=μ1′

Parametric Variance

Variance(X)=μ2′−μ1′2

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2

Parametric Median

Median(X)=aP−1(dp,12)1p

Parametric Mode

Mode(X)=a(d−1p)1pif d>1

Additional Information and Definitions

  • a:Scale parameter
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P−1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function

Spreadsheet Documents