Skip to content

BETA PRIME 4P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.BetaPrime4P({"alpha": *, "beta": *, "loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XBetaPrime4P(α,β,Loc,Sc)

Distribution Domain

x[Loc,)

Parameters Domain and Constraints

αR+,βR+,LocR,ScR+

Cumulative Distribution Function

FX(x)=I(z(x)1+z(x),α,β)

Probability Density Function

fX(x)=z(x)α1(1+z(x))αβSc×Beta(α,β)

Percent Point Function / Sample

FX1(u)=Loc+ScI1(u,α,β)1I1(u,α,β)

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=Γ(k+α)Γ(βk)Γ(α)Γ(β)if β>k

Parametric Mean

Mean(X)=Loc+Scμ~1=Loc+Scαβ1if β>1

Parametric Variance

Variance(X)=Sc2(μ~2μ~12)=Sc2α(α+β1)(β2)(β1)2if β>2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=2(2α+β1)β3β2α(α+β1)if β>3

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2if β>4

Parametric Median

Median(X)=Loc+ScI1(12,α,β)1I1(12,α,β)

Parametric Mode

Mode(X)=Loc+Scα1β+1

Additional Information and Definitions

  • X~BetaPrime(α,β)
  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I1(x,a,b):Inverse of regularized incomplete beta function
  • Γ(x):Gamma function
  • Beta(x,y):Beta function

Spreadsheet Documents