Skip to content

BERNOULLI DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.discrete.Bernoulli({"p": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PMF, PPF receive float or numpy.ndarray.
distribution.cdf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.pmf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.ppf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> int
distribution.mode # -> int

Equations ​

Distribution Definition

X∼Bernoulli(p)

Distribution Domain

x∈{0,1}

Parameters Domain and Constraints

p∈(0,1)⊆R

Cumulative Distribution Function

FX(x)={1−pif  x=01if  x=1

Probability Density Function

fX(x)=px(1−p)1−x

Percent Point Function / Sample

FX−1(u)={1if  u≤p0if  u>p

Parametric Centered Moments

E[Xk]=μk′=∑x=01xkfX(x)=p

Parametric Mean

Mean(X)=μ1′=p

Parametric Variance

Variance(X)=(μ2′−μ1′2)=p(1−p)

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=1−2pp(1−p)

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=3+1−6p(1−p)p(1−p)

Parametric Median

Median(X)={0if p<1/2[0,1]if p=1/21if p>1/2

Parametric Mode

Mode(X)={0if  p<1/20,1if  p=1/21if  p>1/2

Additional Information and Definitions

  • u:Uniform[0,1] random varible

Spreadsheet Documents