Skip to content

LEVY DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Levy({"mu": *, "c": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XLevy(μ,c)

Distribution Domain

x[μ,)

Parameters Domain and Constraints

μR,cR+

Cumulative Distribution Function

FX(x)=1erf(c2(xμ))

Probability Density Function

fX(x)=c2π  ec2(xμ)(xμ)3/2

Percent Point Function / Sample

FX1(u)=μ+c2(erf1(1u))2

Parametric Centered Moments

μk=E[Xk]=μxkfX(x)dx

Parametric Mean

Mean(X)=μ1=

Parametric Variance

Variance(X)=μ2μ12=

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=undefined

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=undefined

Parametric Median

Median(X)=μ+c2(erf1(1/2))2

Parametric Mode

Mode(X)=μ+c3

Additional Information and Definitions

  • μ:Location parameter
  • c:Scale parameter
  • u:Uniform[0,1] random varible
  • erf(x):Error function
  • erf1(x):Inverse of error function

Spreadsheet Documents