Skip to content

WEIBULL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Weibull({"alpha": *, "beta": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XWeibull(α,β)

Distribution Domain

x[0,)

Parameters Domain and Constraints

αR+,βR+

Cumulative Distribution Function

FX(x)=1e(x/β)α

Probability Density Function

fX(x)=αβ(xβ)α1e(x/β)α

Percent Point Function / Sample

FX1(u)=β(ln(1u))1/α

Parametric Centered Moments

μk=E[Xk]=0xkfX(x)dx=βαΓ(1+kα)

Parametric Mean

Mean(X)=μ1=βΓ(1+1/α)

Parametric Variance

Variance(X)=μ2μ12=β2[Γ(1+2/α)(Γ(1+1/α))2]

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2

Parametric Median

Median(X)=β(ln(2))1/α

Parametric Mode

Mode(X)={β(α1α)1/αif α>10if α1

Additional Information and Definitions

  • β:Scale parameter
  • u:Uniform[0,1] random varible
  • Γ(x):Gamma function

Spreadsheet Documents