Skip to content

RAYLEIGH DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Rayleigh({"gamma": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XRayleigh(γ,σ)

Distribution Domain

x[γ,)

Parameters Domain and Constraints

γR,σR+

Cumulative Distribution Function

FX(x)=1ez(x)2/2

Probability Density Function

fX(x)=z(x)×ez(x)2/2/σ

Percent Point Function / Sample

FX1(u)=γ+σ2log(1u)

Parametric Centered Moments

μk=E[X~k]=0xkfX~(x)dx=2kΓ(k2+1)

Parametric Mean

Mean(X)=γ+σμ1=γ+σπ2

Parametric Variance

Variance(X)=σ2(μ2μ12)=σ24π2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=2(π3)π(4π)3/2

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=3+24π6π216(4π)2

Parametric Median

Median(X)=γ+σ2log(12)

Parametric Mode

Mode(X)=γ+σ

Additional Information and Definitions

  • X~Rayleigh(0,1)
  • γ:Location parameter
  • σ:Scale parameter
  • z(x)=(xγ)/σ
  • u:Uniform[0,1] random varible
  • Γ(x):Gamma function

Spreadsheet Documents