Skip to content

LOGNORMAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.LogNormal({"mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XLogNormal(μ,σ)

Distribution Domain

x(,)

Parameters Domain and Constraints

μR,σR+

Cumulative Distribution Function

FX(x)=12[1+erf(ln(x)μσ2)]

Probability Density Function

fX(x)=1xσ2π exp((ln(x)μ)22σ2)

Percent Point Function / Sample

FX1(u)=exp(μ+2σ2erf1(2u1))

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx=ekμ+k2σ2/2

Parametric Mean

Mean(X)=μ1=eμ+σ22

Parametric Variance

Variance(X)=μ2μ12=e2μ+σ2(eσ21)

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=(eσ2+2)eσ21

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=e4σ2+2e3σ2+3e2σ23

Parametric Median

Median(X)=exp(μ)

Parametric Mode

Mode(X)=exp(μσ2)

Additional Information and Definitions

  • μ:Location parameter
  • σ:Scale parameter
  • u:Uniform[0,1] random varible

Spreadsheet Documents