Skip to content

RECIPROCAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Reciprocal({"a": *, "b": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XReciprocal(a,b)

Distribution Domain

x[a,b]

Parameters Domain and Constraints

aR+,bR+,a<b

Cumulative Distribution Function

FX(x)=ln(x)ln(a)ln(b)ln(a)

Probability Density Function

fX(x)=1x(ln(b)ln(a))

Percent Point Function / Sample

FX1(u)=exp(ln(a)+u×(ln(b)ln(a)))

Parametric Centered Moments

μk=E[Xk]=abxkfX(x)dx=bkakk(ln(b)ln(a))

Parametric Mean

Mean(X)=μ1

Parametric Variance

Variance(X)=μ2μ12

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2

Parametric Median

Median(X)=exp[ln(a)+(ln(b)ln(a))2]

Parametric Mode

Mode(X)=a

Additional Information and Definitions

  • u:Uniform[0,1] random varible

Spreadsheet Documents