Skip to content

PARETO SECOND KIND DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.ParetoSecondKind({"xm": *, "alpha": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XParetoSecondKind(xm,α,Loc)

Distribution Domain

x(Loc,)

Parameters Domain and Constraints

xmR+,αR+,LocR

Cumulative Distribution Function

FX(x)=1[1+xLocxm]α

Probability Density Function

fX(x)=αxm[1+xLocxm](α+1)

Percent Point Function / Sample

FX1(u)=Loc+xm[(1p)1α1]

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=xmkΓ(αk)Γ(1+k)Γ(α)

Parametric Mean

Mean(X)=μ~1=xmα1if α>1

Parametric Variance

Variance(X)=μ~2μ~12=xm2α(α1)2(α2)if α>2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=2(1+α)α3α2αif α>3

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=6(α3+α26α2)α(α3)(α4)if α>4

Parametric Median

Median(X)=xm(2α1)

Parametric Mode

Mode(X)=0

Additional Information and Definitions

  • XParetoSecondKind(xm,α,0)
  • xm:Scale parameter
  • u:Uniform[0,1] random varible
  • Γ(x):Gamma function

Spreadsheet Documents