Skip to content

PARETO SECOND KIND DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.ParetoSecondKind({"xm": *, "alpha": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼ParetoSecondKind(xm,α,Loc)

Distribution Domain

x∈(Loc,∞)

Parameters Domain and Constraints

xm∈R+,α∈R+,Loc∈R

Cumulative Distribution Function

FX(x)=1−[1+x−Locxm]−α

Probability Density Function

fX(x)=αxm[1+x−Locxm]−(α+1)

Percent Point Function / Sample

FX−1(u)=Loc+xm[(1−p)−1α−1]

Parametric Centered Moments

μ~k′=E[X~k]=∫0∞xkfX~(x)dx=xmkΓ(α−k)Γ(1+k)Γ(α)

Parametric Mean

Mean(X)=μ~1′=xmα−1if α>1

Parametric Variance

Variance(X)=μ~2′−μ~1′2=xm2α(α−1)2(α−2)if α>2

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5=2(1+α)α−3α−2αif α>3

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2=6(α3+α2−6α−2)α(α−3)(α−4)if α>4

Parametric Median

Median(X)=xm(2α−1)

Parametric Mode

Mode(X)=0

Additional Information and Definitions

  • X∼ParetoSecondKind(xm,α,0)
  • xm:Scale parameter
  • u:Uniform[0,1] random varible
  • Γ(x):Gamma function

Spreadsheet Documents