Skip to content

LOGGAMMA DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.LogGamma({"c": *, "mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XLogGamma(c,μ,σ)

Distribution Domain

x(0,)

Parameters Domain and Constraints

cR+,μR,σR+

Cumulative Distribution Function

FX(x)=γ(c,ex)Γ(c)=P(c,ez(x))

Probability Density Function

fX(x)=exp(cz(x)ez(x))σΓ(c)

Percent Point Function / Sample

FX1(u)=μ+σln(P1(u,c))

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx

Parametric Mean

Mean(X)=μ1=μ+σψ0

Parametric Variance

Variance(X)=μ2μ12=α2ψ1(c)

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=ψ2(c)ψ1(c)

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=ψ3(c)ψ1(c)

Parametric Median

Median(X)=μ+σln(P1(1/2,c))

Parametric Mode

Mode(X)=μ+σln(c)

Additional Information and Definitions

  • μ:Location parameter
  • σ:Scale parameter
  • z(x)=(xμ)/σ
  • u:Uniform[0,1] random varible
  • P(a,x)=γ(a,x)Γ(a):Regularized lower incomplete gamma function
  • P1(a,u):Inverse of regularized lower incomplete gamma function
  • γ(a,x):Lower incomplete gamma function
  • Γ(x):Gamma function
  • ψ0(x):Digamma function
  • ψn(x):Polygamma function of order nN

Spreadsheet Documents