Skip to content

GEOMETRIC DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.discrete.Geometric({"p": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PMF, PPF receive float or numpy.ndarray.
distribution.cdf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.pmf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.ppf(int | numpy.ndarray[int]) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> int
distribution.mode # -> int

Equations

Distribution Definition

XGeometric(p)

Distribution Domain

xN+{1,2,}

Parameters Domain and Constraints

p(0,1)R

Cumulative Distribution Function

FX(x)=1(1p)x

Probability Density Function

fX(x)=(1p)x1p

Percent Point Function / Sample

FX1(u)=ln(1u)ln(1p)

Parametric Centered Moments

E[Xk]=μk=x=0xkfX(x)=x=0(1p)xpxk

Parametric Mean

Mean(X)=μ1=1p

Parametric Variance

Variance(X)=(μ2μ12)=1pp2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=2p1p

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=9+p21p

Parametric Median

Median(X)=1log2(1p)

Parametric Mode

Mode(X)=1

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • x:Floor function
  • x:Ceiling Function

Spreadsheet Documents