Skip to content

JOHNSON SU DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.JohnsonSU({"xi": *, "lambda": *, "gamma": *, "delta": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XJohnsonSU(ξ,λ,γ,δ)

Distribution Domain

x(,)

Parameters Domain and Constraints

ξR,λR+,γR,δR+

Cumulative Distribution Function

FX(x)=Φ(γ+δsinh1(z(x)))

Probability Density Function

fX(x)=δλ2πz(x)2+1exp[12(γ+δsinh1(z(x)))2]

Percent Point Function / Sample

FX1(u)=λsinh(Φ1(u)γδ)+ξ

Parametric Centered Moments

μk=E[Xk]=xkfX(x)dx

Parametric Mean

Mean(X)=μ1=ξλexpδ22sinh(γδ)

Parametric Variance

Variance(X)=μ2μ12=λ22(exp(δ2)1)(exp(δ2)cosh(2γδ)+1)

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=λ3eδ2(eδ21)2(eδ2)(eδ2+2)sinh(3γδ)+3sinh(2γδ))4Variance(X)1.5

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=λ4(eδ21)2(K1+K2+K3)8Variance(X)2

Parametric Median

Median(X)=ξ+λsinh(γδ)

Parametric Mode

Mode(X)=argmaxxfX(x)

Additional Information and Definitions

  • ξ:Location parameter
  • λ:Scale parameter
  • z(x)=(xξ)/λ
  • u:Uniform[0,1] random varible
  • Φ(x):CDF normal standard distribution
  • Φ1(x):PPF normal standard distribution
  • K1=(eδ2)2((eδ2)4+2(eδ2)3+3(eδ2)23)cosh(4γδ)
  • K2=4(eδ2)2((eδ2)+2)cosh(3γδ)
  • K3=3(2(eδ2)+1)

Spreadsheet Documents