Skip to content

GIBRAT DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Gibrat({"loc": *, "scale": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XGibrat(Loc,Sc)

Distribution Domain

x(Loc,)

Parameters Domain and Constraints

LocR,ScR+

Cumulative Distribution Function

FX(x)=Φ(lnx)=12(1+erf(lnz(x)2))

Probability Density Function

fX(x)=1Sc1x2πexp(12(lnz(x))2)

Percent Point Function / Sample

FX1(u)=Loc+Sc×exp(Φ1(u))

Parametric Centered Moments

μk=E[Xk]=LocxkfX(x)dx=exp(k22)

Parametric Mean

Mean(X)=Loc+Scμ~1=Loc+Sce

Parametric Variance

Variance(X)=Sc2(μ~2μ~12)=Sc2[e2e]

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=e1(2+e)

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=e4+2e3+3e23

Parametric Median

Median(X)=Loc+Sc×exp(Φ1(1/2))

Parametric Mode

Mode(X)=Loc+Sce

Additional Information and Definitions

  • Loc:Location parameter
  • Sc:Scale parameter
  • z(x)=(xLoc)/Sc
  • u:Uniform[0,1] random varible
  • Φ(x):CDF normal standard distribution
  • Φ1(x):PPF normal standard distribution
  • erf(x):Error function

Spreadsheet Documents