Skip to content

BRADFORD DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Bradford({"c": *, "min": *, "max": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XBradford(c,min,max)

Distribution Domain

x(min,max)

Parameters Domain and Constraints

cR+,minR,maxR,min<max

Cumulative Distribution Function

FX(x)=ln(1+cz(x))k

Probability Density Function

fX(x)=ck(1+cz(x))(maxmin)

Percent Point Function / Sample

FX1(u)=min+(maxmin)×(1+c)u1c

Parametric Centered Moments

μ~k=E[X~k]=01xkfX~(x)dx

Parametric Mean

Mean(X)=min+(maxmin)μ~1=min+(maxmin)ckck

Parametric Variance

Variance(X)=(maxmin)2(μ~2μ~12)=(maxmin)2(c+2)k2c2ck2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=2(12c29kc(c+2)+2k2(c(c+3)+3))c(c(k2)+2k)(3c(k2)+6k)

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=3+c3(k3)(k(3k16)+24)+12kc2(k4)(k3)+6ck2(3k14)+12k33c(c(k2)+2k)2

Parametric Median

Median(X)=min+(maxmin)(1+c)frac121c

Parametric Mode

Mode(X)=min

Additional Information and Definitions

  • X~Bradford(c,0,1)
  • k=ln(1+c)
  • z(x)=(xmin)/(maxmin)
  • u:Uniform[0,1] random varible

Spreadsheet Documents