Skip to content

GENERALIZED PARETO DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.GeneralizedPareto({"c": *, "mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼GeneralizedPareto(c,μ,σ)

Distribution Domain

if c⩾0: x∈(μ,∞),if c<0: x∈(−∞,μ−σc)

Parameters Domain and Constraints

c∈R,μ∈R,σ∈R+

Cumulative Distribution Function

FX(x)=1−(1+cz(x))−1/c

Probability Density Function

fX(x)=1σ(1+cz(x))−(1/c+1)

Percent Point Function / Sample

FX−1(u)=μ+σ(u−c−1)c

Parametric Centered Moments

μk′=E[Xk]=∫−∞∞xkfX(x)dx=(−1)kck∑i=0k(ki)(−1)i1−ciif <1k

Parametric Mean

Mean(X)=μ+σμ1′=μ+σ1−cif c<1

Parametric Variance

Variance(X)=σ2(μ2′−μ1′2)=σ2(1−c)2(1−2c)if c<1/2

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=2(1+c)1−2c(1−3c)if c<1/3

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=3(1−2c)(2c2+c+3)(1−3c)(1−4c)if c<1/4

Parametric Median

Median(X)=μ

Parametric Mode

Mode(X)=μ+σ(2c−1)c

Additional Information and Definitions

  • μ:Location parameter
  • σ:Scale parameter
  • z(x)=(x−μ)/σ
  • u:Uniform[0,1] random varible

Spreadsheet Documents