Skip to content

TRAPEZOIDAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Trapezoidal({"a": *, "b": *, "c": *, "d": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XTrapezoidal(a,b,c,d)

Distribution Domain

x[a,d]

Parameters Domain and Constraints

aR,bR,cR,dR,a<b<c,b<c<d

Cumulative Distribution Function

FX(x)={1d+cab1ba(xa)2if  ax<b1d+cab(2xab)if  bx<c11d+cab1dc(dx)2if  cxd

Probability Density Function

fX(x)={2d+cabxabaif  ax<b2d+cabif  bx<c2d+cabdxdcif  cxd

Percent Point Function / Sample

FX1(u)={a+u×(d+cab)×(ba)if uA1(a+b+u×(d+cab))/2if A1uA1+A2d(1u)×(d+cab)×(dc)if A1+A2uA1+A2+A3

Parametric Centered Moments

μk=E[Xk]=abxkfX(x)dx=2d+cba1(k+1)(k+2)(dk+2ck+2dcbk+2ak+2ba)

Parametric Mean

Mean(X)=μ1

Parametric Variance

Variance(X)=μ2μ12

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2

Parametric Median

Median(X)=FX1(1/2)

Parametric Mode

Mode(X)[b,c]

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • A1=(ba)/(d+cab)
  • A2=2(cb)/(d+cab)
  • A3=(dc)/(d+cab)

Spreadsheet Documents