Skip to content

F DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.F({"df1": *, "df2": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼F(df1,df2)

Distribution Domain

x∈[0,∞)

Parameters Domain and Constraints

df1∈R+,df2∈R+

Cumulative Distribution Function

FX(x)=Idf1x/(df1x+df2)(df12,df22)

Probability Density Function

fX(x)=(df1x)df1df2df2(df1x+df2)df1+df2x ×Beta(df12,df22)

Percent Point Function / Sample

FX−1(u)=df2×I−1(u,df12,df22)df1×(1−I−1(u,df12,df22))

Parametric Centered Moments

μk′=E[Xk]=∫0∞xkfX(x)dx=(df2df1)kΓ(df12+k)Γ(df12)Γ(df22−k)Γ(df22)if df2>2k

Parametric Mean

Mean(X)=μ1′=df2df2−2if df2>2

Parametric Variance

Variance(X)=μ2′−μ1′2=2df22(df1+df2−2)df1(df2−2)2(df2−4)if df2>4

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=(2df1+df2−2)8(df2−4)(df2−6)df1(df1+df2−2)if df2>6

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2=3(8+(df2−6)×Skewness(X)2)2df2−16+3if df2>8

Parametric Median

Median(X)=df2×I−1(12,df12,df22)df1×(1−I−1(12,df12,df22))

Parametric Mode

Mode(X)=df2(df1−2)df1(df2+2)if df1>2

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I−1(x,a,b):Inverse of regularized incomplete beta function
  • Beta(x,y):Beta function

Spreadsheet Documents