Skip to content

F DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.F({"df1": *, "df2": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XF(df1,df2)

Distribution Domain

x[0,)

Parameters Domain and Constraints

df1R+,df2R+

Cumulative Distribution Function

FX(x)=Idf1x/(df1x+df2)(df12,df22)

Probability Density Function

fX(x)=(df1x)df1df2df2(df1x+df2)df1+df2x ×Beta(df12,df22)

Percent Point Function / Sample

FX1(u)=df2×I1(u,df12,df22)df1×(1I1(u,df12,df22))

Parametric Centered Moments

μk=E[Xk]=0xkfX(x)dx=(df2df1)kΓ(df12+k)Γ(df12)Γ(df22k)Γ(df22)if df2>2k

Parametric Mean

Mean(X)=μ1=df2df22if df2>2

Parametric Variance

Variance(X)=μ2μ12=2df22(df1+df22)df1(df22)2(df24)if df2>4

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=(2df1+df22)8(df24)(df26)df1(df1+df22)if df2>6

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2=3(8+(df26)×Skewness(X)2)2df216+3if df2>8

Parametric Median

Median(X)=df2×I1(12,df12,df22)df1×(1I1(12,df12,df22))

Parametric Mode

Mode(X)=df2(df12)df1(df2+2)if df1>2

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I1(x,a,b):Inverse of regularized incomplete beta function
  • Beta(x,y):Beta function

Spreadsheet Documents