Skip to content

HALF NORMAL DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.HalfNormal({"mu": *, "sigma": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XHalfNormal(μ,σ)

Distribution Domain

x(μ,)

Parameters Domain and Constraints

μR,σR+

Cumulative Distribution Function

FX(x)=2Φ(z(x))1=erf(z(x)2)

Probability Density Function

fX(x)=2σπexp(z(x)22)

Percent Point Function / Sample

FX1(u)=μ+σΦ1(1+u2)=μ~+σ2erf1(u)

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=2n/2Γ(n+12)π

Parametric Mean

Mean(X)=μ~+σμ~1=μ~+σ2π

Parametric Variance

Variance(X)=σ2(μ~2μ~12)=σ2(12π)

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=2(4π)(π2)3/2=0.9952717

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=3+8(π3)(π2)2=3.869177

Parametric Median

Median(X)=μ+σ2erf1(1/2)

Parametric Mode

Mode(X)=μ

Additional Information and Definitions

  • X~HalfNormal(0,1)
  • μ:Location parameter
  • σ:Scale parameter
  • z(x)=(xμ)/σ
  • u:Uniform[0,1] random varible
  • Φ(x):CDF normal standard distribution
  • Φ1(x):PPF normal standard distribution
  • erf(x):Error function
  • Γ(x):Gamma function

Spreadsheet Documents