Skip to content

PARETO FIRST KIND DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.ParetoFirstKind({"xm": *, "alpha": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼ParetoFirstKind(xm,α,Loc)

Distribution Domain

x∈[Loc+xm,∞)

Parameters Domain and Constraints

xm∈R+,α∈R+,Loc∈R

Cumulative Distribution Function

FX(x)=1−(xmx−Loc)α

Probability Density Function

fX(x)=αxmα(x−Loc)α+1

Percent Point Function / Sample

FX−1(u)=Loc+xm(1−u)−1α

Parametric Centered Moments

μ~k′=E[X~k]=∫xm∞xkfX~(x)dx={∞if α≤kαxmkα−kif α>k

Parametric Mean

Mean(X)=Loc+μ~1′=Loc+αxmα−1if α>1

Parametric Variance

Variance(X)=(μ~2′−μ~1′2)=xm2α(α−1)2(α−2)if α>2

Parametric Skewness

Skewness(X)=μ~3′−3μ~2′μ~1′+2μ~1′3(μ~2′−μ~1′2)1.5=2(1+α)α−3α−2αif α>3

Parametric Kurtosis

Kurtosis(X)=μ~4′−4μ~1′μ~3′+6μ~1′2μ~2′−3μ~1′4(μ~2′−μ~1′2)2=6(α3+α2−6α−2)α(α−3)(α−4)if α>4

Parametric Median

Median(X)=Loc+xm2α

Parametric Mode

Mode(X)=Loc+xm

Additional Information and Definitions

  • X~∼ParetoFirstKind(xm,α,0)
  • Loc:Location parameter
  • xm:Scale parameter
  • u:Uniform[0,1] random varible

Spreadsheet Documents