Skip to content

PARETO FIRST KIND DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.ParetoFirstKind({"xm": *, "alpha": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XParetoFirstKind(xm,α,Loc)

Distribution Domain

x[Loc+xm,)

Parameters Domain and Constraints

xmR+,αR+,LocR

Cumulative Distribution Function

FX(x)=1(xmxLoc)α

Probability Density Function

fX(x)=αxmα(xLoc)α+1

Percent Point Function / Sample

FX1(u)=Loc+xm(1u)1α

Parametric Centered Moments

μ~k=E[X~k]=xmxkfX~(x)dx={if αkαxmkαkif α>k

Parametric Mean

Mean(X)=Loc+μ~1=Loc+αxmα1if α>1

Parametric Variance

Variance(X)=(μ~2μ~12)=xm2α(α1)2(α2)if α>2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=2(1+α)α3α2αif α>3

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=6(α3+α26α2)α(α3)(α4)if α>4

Parametric Median

Median(X)=Loc+xm2α

Parametric Mode

Mode(X)=Loc+xm

Additional Information and Definitions

  • X~ParetoFirstKind(xm,α,0)
  • Loc:Location parameter
  • xm:Scale parameter
  • u:Uniform[0,1] random varible

Spreadsheet Documents