Skip to content

EXPONENTIAL 2P DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Exponential2P({"lambda": *, "loc": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XExponential2P(λ,Loc)

Distribution Domain

x[Loc,)

Parameters Domain and Constraints

λR+,LocR

Cumulative Distribution Function

FX(x)=1eλ(xLoc)

Probability Density Function

fX(x)=λeλ(xLoc)

Percent Point Function / Sample

FX1(u)=Locln(1u)λ

Parametric Centered Moments

μ~k=E[X~k]=0xkfX~(x)dx=k!λk

Parametric Mean

Mean(X)=Loc+μ~1=Loc+1λ

Parametric Variance

Variance(X)=μ~2μ~12=1λ2

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=2

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=9

Parametric Median

Median(X)=Loc+ln2λ

Parametric Mode

Mode(X)=Loc

Additional Information and Definitions

  • X~Exponential(λ)
  • Loc:Location parameter
  • λ:Inverse of scale parameter
  • u:Uniform[0,1] random varible

Spreadsheet Documents