Skip to content

BETA PRIME DISTRIBUTION ​

Phitter implementation ​

Distribution Definition

python
import phitter

distribution = phitter.continuous.BetaPrime({"alpha": *, "beta": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations ​

Distribution Definition

X∼BetaPrime(α,β)

Distribution Domain

x∈[0,∞)

Parameters Domain and Constraints

α∈R+,β∈R+

Cumulative Distribution Function

FX(x)=I(x1+x,α,β)

Probability Density Function

fX(x)=xα−1(1+x)−α−βBeta(α,β)

Percent Point Function / Sample

FX−1(u)=I−1(u,α,β)1−I−1(u,α,β)

Parametric Centered Moments

μk′=E[Xk]=∫0∞xkfX(x)dx=Γ(k+α)Γ(β−k)Γ(α)Γ(β)if β>k

Parametric Mean

Mean(X)=μ1′=αβ−1if β>1

Parametric Variance

Variance(X)=μ2′−μ1′2=α(α+β−1)(β−2)(β−1)2if β>2

Parametric Skewness

Skewness(X)=μ3′−3μ2′μ1′+2μ1′3(μ2′−μ1′2)1.5=2(2α+β−1)β−3β−2α(α+β−1)if β>3

Parametric Kurtosis

Kurtosis(X)=μ4′−4μ1′μ3′+6μ1′2μ2′−3μ1′4(μ2′−μ1′2)2if β>4

Parametric Median

Median(X)=I−1(12,α,β)1−I−1(12,α,β)

Parametric Mode

Mode(X)=α−1β+1

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I−1(x,a,b):Inverse of regularized incomplete beta function
  • Γ(x):Gamma function
  • Beta(x,y):Beta function

Spreadsheet Documents