Skip to content

BETA PRIME DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.BetaPrime({"alpha": *, "beta": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XBetaPrime(α,β)

Distribution Domain

x[0,)

Parameters Domain and Constraints

αR+,βR+

Cumulative Distribution Function

FX(x)=I(x1+x,α,β)

Probability Density Function

fX(x)=xα1(1+x)αβBeta(α,β)

Percent Point Function / Sample

FX1(u)=I1(u,α,β)1I1(u,α,β)

Parametric Centered Moments

μk=E[Xk]=0xkfX(x)dx=Γ(k+α)Γ(βk)Γ(α)Γ(β)if β>k

Parametric Mean

Mean(X)=μ1=αβ1if β>1

Parametric Variance

Variance(X)=μ2μ12=α(α+β1)(β2)(β1)2if β>2

Parametric Skewness

Skewness(X)=μ33μ2μ1+2μ13(μ2μ12)1.5=2(2α+β1)β3β2α(α+β1)if β>3

Parametric Kurtosis

Kurtosis(X)=μ44μ1μ3+6μ12μ23μ14(μ2μ12)2if β>4

Parametric Median

Median(X)=I1(12,α,β)1I1(12,α,β)

Parametric Mode

Mode(X)=α1β+1

Additional Information and Definitions

  • u:Uniform[0,1] random varible
  • I(x,a,b):Regularized incomplete beta function
  • I1(x,a,b):Inverse of regularized incomplete beta function
  • Γ(x):Gamma function
  • Beta(x,y):Beta function

Spreadsheet Documents