Skip to content

ARCSINE DISTRIBUTION

Phitter implementation

Distribution Definition

python
import phitter

distribution = phitter.continuous.Arcsine({"a": *, "b": *})

💡 The distribution's parameters are defined equation section below

Distribution Methods and Attributes

python
## CDF, PDF, PPF receive float or numpy.ndarray.
distribution.cdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.pdf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.ppf(float | numpy.ndarray) # -> float | numpy.ndarray
distribution.sample(int) # -> numpy.ndarray

## STATS
distribution.mean # -> float
distribution.variance # -> float
distribution.standard_deviation # -> float
distribution.skewness # -> float
distribution.kurtosis # -> float
distribution.median # -> float
distribution.mode # -> float

Equations

Distribution Definition

XArcsine(a,b)

Distribution Domain

x(a,b)

Parameters Domain and Constraints

aR,bR,a<b

Cumulative Distribution Function

FX(x)=2πarcsin(xaba)

Probability Density Function

fX(x)=1π(xa)(bx)

Percent Point Function / Sample

FX1(u)=a+(ba)×sin2(π2u)

Parametric Centered Moments

μ~k=E[X~k]=01xkfX~(x)dx=1πBeta(12,k+12)=(2k1)!!2kk!

Parametric Mean

Mean(X)=a+μ~1(ba)=a+12(ba)

Parametric Variance

Variance(X)=(ba)2×(μ~2μ~12)=(ba)28

Parametric Skewness

Skewness(X)=μ~33μ~2μ~1+2μ~13(μ~2μ~12)1.5=0

Parametric Kurtosis

Kurtosis(X)=μ~44μ~1μ~3+6μ~12μ~23μ~14(μ~2μ~12)2=332

Parametric Median

Median(X)=a+(ba)×sin2(π4)

Parametric Mode

Mode(X)=undefined

Additional Information and Definitions

  • X~Arcsine(0,1)
  • u:Uniform[0,1] random varible
  • Beta(x,y):Beta function

Spreadsheet Documents